Description

The 8546 current monitor works with 24 V DC and measures the magnetic field around a conductor (Cu-busbar).
The device switches if the magnetic field, and thus also the current passing through the busbar, exceeds a threshold value that can be set as desired.

The polarity of the DC-current makes no difference.
Due to the special technology, despite its high triggering sensitivity thedevicestillremainsfunctionalevenwhenencounteringextremely high magnetic fields as caused by a lightning strike, for example.
The sensitivity of the device (switching threshold) can be set by means of an internal potentiometer. If the current is exceeded, a electronic switching output (positive switching with regard to $24 \mathrm{~V} D C$) is set.

The current monitor 8546 is applicable in a wide range of current sensoring. The lower limit is about 10A. The upper limit is dependent from the mechanical distance between busbar and sensor.
If the mechanical distance is fixed the range between the lower and upper limit for adjust the switching point is a factor of 4 (e.g. 10A30A, or 30A-100A)

A test button in the device increases the sensitivity by a factor of 3 . In this way damage to the components can be detected at an early stage in maintenance work (advance warning failure test). Furthermore, it makes it easier to set the threshold switching point, since the test current for comparison can be lower by this factor.
The device works as a "latch", meaning that the switching signal of the output is still present even after a brief overcurrent until the device is reset via a digital input. If this input is permanently switched, the device works as a normal overcurrent sensor (without a "latch" function.

The switching output works as "low active", meaning that in a nonoperated condition it is switched with respect to +24 V DC. It switches off if the threshold current is exceeded, hence being high resistance.

A cable break is handled in exact the same wax as an overcurrent in the subsequent evaluation.

The status of the device is shown by to display LED's:

- Green LED: power supply OK
-OrangeLED:switchingthresholdexceeded (outputswitched offf)

Technical data	
Dimensions	housing $65 \times 50 \times 55 \mathrm{~mm}$ copper busbar $150 \times 35 \times 5 \mathrm{~mm}$
Fixing connections	max. M10
Connections	+24VDC, DC GND, Reset, Output
Cross-section	$35 \times 5 \mathrm{~mm}^{2} \mathrm{Cu}$
Potting	PU
Contact	electronic switching contact
Operate value	720100: 10 A to 30A 720105: 30A to 100A
Switching voltage	max. DC 30V
Switching current	max. DC 200 mA
Switching power	max. 4 W
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}, 5-95 \%$ humidity
Connection	4 screw clamps, max $1,5 \mathrm{~mm}^{2}$
	M12x1,5 cable gland
Test voltage	DC12kV (Cu-bar to signal terminals)
Limiting dynamic value	60kA ($8 / 20 \mu \mathrm{~s}$)
Lightning stroke current	25kA (10/350 $/$ s)
permanent current	Cu-bar $35 \times 5 \mathrm{~mm}\left(175 \mathrm{~mm}^{2}\right)$:
(Tenv. $35^{\circ} \mathrm{C}$, $\mathrm{Tmax} 65^{\circ} \mathrm{C}$)	1 max DC 400A
Ordering Information	
Type	Order No.
8546-30	720100
8546-100	720105

[^0]
2. Technical data

2.1 Limit data

(absolute maximum values)

Parameter	Symbol	Limit values	Condition	Additional description
Supply voltage	$U_{B-m i n}$ $U_{B-m a x}$	$\begin{aligned} & 16 \mathrm{VDC} \\ & +30 \mathrm{VDC} \end{aligned}$	Residual ripple $<100 \mathrm{mV}$ SS	
Switching output	$\begin{array}{\|l} \mathrm{L}-\mathrm{max} \\ \mathrm{U}_{\mathrm{L}-\mathrm{CP}} \end{array}$	$\begin{aligned} & 200 \mathrm{~mA} \\ & 62 \mathrm{~V} \end{aligned}$		permanently resistant to short circuiting, overload protection
Control input	$\mathrm{UE}_{\mathrm{E}-\max }$	$\pm 30 \mathrm{VDC}$		
Ambient temperature	$\mathrm{T}_{\text {a }}(\mathrm{B})$	$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	rel. humidity 5-95\%	non-condensing
Storage temperature	$\mathrm{T}_{\mathrm{a}(\mathrm{L})}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	rel. humidity 5-95\%	non-condensing

2.2 Electrical data, supply

Tension d'alimentation	U_{B}	24 V DC	Tolerance $\pm 20 \%$	
Consommation en courant	I_{B}	21 mA	$\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V} \mathrm{DC}$	
Puissance dissipée	P_{B}	500 mW	$\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V}$ DC	

2.3 Electrical data, switching output

Type de sortie		PNP		Positive switching
Logique de commutation		low active		$+24 \mathrm{~V}=$ switched off oV (high resist.) $=$ switched on
Charge	I_{L}	0 mA to 200 mA	$\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V} \mathrm{DC}$	
Protection de surintensité		yes		permanently
Protection de court-circuit		yes		permanently
Courant de court-circuit max	$\mathrm{I}_{\mathrm{L}-\mathrm{SC}}$	1.2 A	$\mathrm{~T}_{\mathrm{a}(\mathrm{B})=-25^{\circ} \mathrm{C}}$	
Chute de tension	$\mathrm{U}_{\mathrm{A}-\mathrm{max}}$	$<1 \mathrm{~V}$	$\mathrm{I}_{\mathrm{L}}<\mathrm{I}_{\mathrm{L}-\mathrm{max}}$	

2.4 Electrical data, control input

Input voltage - logical „0" - logical „1"	UE0-max $\mathrm{U}_{\mathrm{E} 1-\mathrm{min}}$	$\begin{aligned} & <+10 \mathrm{VDC} \\ & >+20 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC} \\ & \mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC} \end{aligned}$	or unswitched (open)
Drive current	$\mathrm{I}_{\mathrm{E}-\mathrm{max}}$	$<1 \mathrm{~mA}$	$U_{E}=24 \mathrm{~V} D C$	
Min. pulse length	TE-min	150 ms		Internal filtering to supress interference pulses

3. Block circuit diagram

4. Dimensions, connection scheme

[^0]: Other design variants of coil connections, fixing, operate values and cable lead lengths on request.

